

## Self-paced Consensus Clustering with Bipartite Graph



reliability of

each edge

Peng Zhou(周芃)¹; Liang Du(杜亮)²; Xuejun Li(李学俊)¹,²
¹Anhui University, ²Shanxi University

## Introduction

Clustering often suffers from stable and robust problems.

To tackle this problem, consensus clustering a.k.a. clustering ensemble is proposed.

Consensus clustering aims to learn a consensus clustering result from multiple base clustering results, e.g.



Conventional clustering ensemble methods use *all* instances for learning, which may be inappropriate, because some instances are *unreliable*.

To address this issue, we integrate the consensus clustering into *self-paced learning* framework, which gradually involve instances from more reliable to less reliable ones into the ensemble learning.

# Wethods Self-paced learning Self-paced learning

Y: Initial bipartite graph

S: learned structured bipartite graph

W: reliability matrix of edges C: similarity matrix of clusters

## Objective function: $\begin{aligned} & \text{Self-paced} \\ & \min_{\mathbf{S},\mathbf{W}} & \|\mathbf{W}\odot(\mathbf{S}-\mathbf{Y})\|_F^2 - \lambda \|\mathbf{W}\|_1 \\ & + \gamma \sum_{i=1}^n \sum_{p,q=1}^k C_{pq}(S_{ip}-S_{iq})^2 W_{ip} W_{iq} \\ & s.t. & 0 \leq S_{ij} \leq 1, \quad rank(\mathbf{L}) = n+k-c \end{aligned}$

Make the learned graph contain just c connective components

### Optimization:

$$\min_{\mathbf{S}, \mathbf{W}} \| \mathbf{W} \odot (\mathbf{S} - \mathbf{Y}) \|_F^2 - \lambda \| \mathbf{W} \|_1$$

$$+ \gamma \sum_{i=1}^n \sum_{p,q=1}^k C_{pq} (S_{ip} - S_{iq})^2 W_{ip} W_{iq}$$

$$s.t. \quad 0 \le S_{ij} \le 1, \quad rank(\mathbf{L}) = n + k - c,$$

$$0 \le W_{ij} \le 1.$$

$$\min_{\mathbf{S}, \mathbf{W}, \mathbf{F}} \| \mathbf{W} \odot (\mathbf{S} - \mathbf{Y}) \|_F^2 - \lambda \| \mathbf{W} \|_1$$

$$+ \gamma \sum_{i=1}^n \sum_{p,q=1}^k C_{pq} (S_{ip} - S_{iq})^2 W_{ip} W_{iq} + \rho tr(\mathbf{F}^T \mathbf{L} \mathbf{F})$$

$$s.t. \quad 0 \le S_{ij} \le 1,$$

$$0 \le W_{ij} \le 1,$$

$$\mathbf{F}^T \mathbf{F} = \mathbf{I}.$$

Block coordinate descent algorithm: iteratively update W, S, Y, and F

## Results

| Methods | ALLAML | GLIOMA | K1b    | Lung   | Medical | Tr41   | Tdt2   | Tox    |
|---------|--------|--------|--------|--------|---------|--------|--------|--------|
| KM      | 0.6545 | 0.4239 | 0.6726 | 0.7114 | 0.3996  | 0.5626 | 0.4104 | 0.4229 |
| KM-best | 0.7292 | 0.4880 | 0.8559 | 0.8675 | 0.4707  | 0.6946 | 0.4460 | 0.4825 |
| CSPA    | 0.6583 | 0.4100 | 0.4531 | 0.4138 | 0.3500  | 0.5213 | 0.2850 | 0.4246 |
| HGPA    | 0.5444 | 0.4180 | 0.5326 | 0.5025 | 0.2950  | 0.4894 | 0.2959 | 0.3854 |
| MCLA    | 0.6722 | 0.4000 | 0.7383 | 0.7084 | 0.4017  | 0.5698 | 0.4000 | 0.4152 |
| NMFC    | 0.6722 | 0.4140 | 0.5860 | 0.6764 | 0.3789  | 0.6323 | 0.3716 | 0.4269 |
| BCE     | 0.6708 | 0.4280 | 0.6345 | 0.6700 | 0.3965  | 0.6205 | 0.1806 | 0.4140 |
| RCE     | 0.6708 | 0.4260 | 0.6887 | 0.7143 | 0.3851  | 0.6391 | 750    | 0.4105 |
| MEC     | 0.6056 | 0.3940 | 0.8190 | 0.7379 | 0.3627  | 0.6559 | -      | 0.4304 |
| LWEA    | 0.6736 | 0.4320 | 0.8279 | 0.7458 | 0.4208  | 0.6719 | 0.5744 | 0.4234 |
| LWGP    | 0.6750 | 0.4320 | 0.7172 | 0.6498 | 0.4047  | 0.6483 | 0.4288 | 0.4193 |
| RSEC    | 0.5917 | 0.4180 | 0.8409 | 0.8217 | 0.3490  | 0.6367 | 0.4222 | 0.4041 |
| DREC    | 0.6819 | 0.4280 | 0.6462 | 0.6379 | 0.3926  | 0.6243 | 0.3684 | 0.4205 |
| SCCBG-W | 0.6681 | 0.4080 | 0.8405 | 0.8094 | 0.3980  | 0.6136 | 0.5011 | 0.4053 |
| SCCBG   | 0.6861 | 0.4500 | 0.8663 | 0.8961 | 0.4592  | 0.6973 | 0.7164 | 0.4339 |

Table 2: ACC results on all the data sets

| Methods | ALLAML | GLIOMA | K1b    | Lung   | Medical | Tr41   | Tdt2   | Tox    |
|---------|--------|--------|--------|--------|---------|--------|--------|--------|
| KM      | 0.0882 | 0.1629 | 0.5493 | 0.5284 | 0.4209  | 0.5843 | 0.6111 | 0.1374 |
| KM-best | 0.1772 | 0.2347 | 0.6853 | 0.6558 | 0.4806  | 0.6713 | 0.6240 | 0.2164 |
| CSPA    | 0.0815 | 0.1716 | 0.4071 | 0.3712 | 0.3992  | 0.5919 | 0.5589 | 0.1436 |
| HGPA    | 0.0110 | 0.1509 | 0.3917 | 0.3372 | 0.3613  | 0.5084 | 0.5385 | 0.1083 |
| MCLA    | 0.0909 | 0.1327 | 0.5944 | 0.5258 | 0.4296  | 0.6044 | 0.6070 | 0.1329 |
| NMFC    | 0.0909 | 0.1550 | 0.4995 | 0.5202 | 0.4259  | 0.6512 | 0.5930 | 0.1434 |
| BCE     | 0.0821 | 0.1658 | 0.5414 | 0.4977 | 0.4499  | 0.6398 | 0.0000 | 0.1370 |
| RCE     | 0.0899 | 0.1624 | 0.6068 | 0.5248 | 0.4475  | 0.6499 | -      | 0.1344 |
| MEC     | 0.0485 | 0.1312 | 0.6818 | 0.5617 | 0.4089  | 0.6758 | -      | 0.1313 |
| LWEA    | 0.0935 | 0.1686 | 0.6948 | 0.5364 | 0.4185  | 0.6666 | 0.7183 | 0.1236 |
| LWGP    | 0.0932 | 0.1682 | 0.6115 | 0.4993 | 0.4266  | 0.6535 | 0.6266 | 0.1333 |
| RSEC    | 0.0495 | 0.1544 | 0.6615 | 0.6027 | 0.4036  | 0.6449 | 0.5243 | 0.1184 |
| DREC    | 0.1006 | 0.1641 | 0.5774 | 0.4647 | 0.4510  | 0.6514 | 0.5971 | 0.1394 |
| SCCBG-W | 0.0894 | 0.1567 | 0.6888 | 0.5785 | 0.3220  | 0.6039 | 0.6433 | 0.1239 |
| SCCBG   | 0.1252 | 0.2163 | 0.7262 | 0.6930 | 0.3918  | 0.6847 | 0.7568 | 0.2131 |

Table 3: NMI results on all the data sets

## **Contact**